

Comparative and functional genomics of Roseovarius

Sierrastarr Roberts

Student Assistant

Shwetha Acharya

Mentor

Background

- Oil extraction => wastewater
 - 600 billion liters of PW in 2017 in the U.S. alone¹
 - Not easy to clean
- Using Microbes to clean = bioreactor
 - Increased salinity past marine
- Roseovarius genus prevalent

PW source: Denver-Julesburg basin

Reactor volume: 70 L, aerated **Inoculum**: Activated sludge from conventional wastewater facility

Data and Methods

KBase

Data Analysis: Phylo-trees, Pangenomes, Annotation, and Building of Metabolic Models

KEGG Pathway Database

Collections metabolic processes

COG NCBI Database

Cluster of Orthologous Genes

MAG name	Completeness	Contamination
MAG1	98.77	0.06
MAG2	95.18	1.58
MAG3	97.63	0.3
MAG4	98.32	0.17

Potential ID of Roseovarius MAGs

Enriched Function

Phylogenetic Closeness

2 nodes out had the most in common

By Environment/habitat

 Marine, Plastic Surface had most in common [shared functions, not enriched ones]

Unique Functions Theorized Role

- ABC-type sulfate transport system, permease component [PDB 3d31]
 - Transports molybdate/tungstate² natural, inorganic metal salts³
- Tetraheme cytochrome c subunit NapC of nitrate or TMAO reductase (NapC)
 - Transmembrane electron acceptor in Q-Cycle⁴
- Predicted esterase of the alpha/beta hydrolase fold [PDB:1UXO]
 - Hydrolase, predicted to work on hydrophilic esters/thioesters⁵
- Serine protease, subtilisin family (AprE) [PDB:1SCJ]
 - Predicted thermal-stability function⁶
- p-Aminobenzoyl-glutamate transporter AbgT
 - Transport polycyclic aromatic hydrocarbon aminobenzoate⁷

Hydrocarbon Degradation

Benzoate

- 8/36
- Has a complete path for
- Excluding MAG3
- benzoate => catechol

Muconic Acid

- 10/36
- Excluding MAG3

Cinnamic acid

- 34/36
- Cinnamaldehyde turns into this with exposure to light

Aminobenzoate

Partial path

Hydrocarbon Degradation

- Benzoate, Muconic Acid, Cinnamic Acid
 - additives to fracking water

- Xylene, Dioxin, Caprolactam, Polycyclic aromatic Hydrocarbon
 - Only has a 1-2 enzymes from the entire pathway
 - Unsure if preforms

Unique Function

Common to 3

- MAG3 only has one
 - Biopolymer transport protein ExbD/ToIR [1,2,3]
 - Iron uptake⁸
- MAGs 1, 2, and 4 have four in common
 - Transcriptional regulator, AcrR family
 - Can have a role in biofilm formation/stress response⁹

Common to 2

- Range of enzymes & transporters & specific subunits
- MAGs 1 & 2 share the most
- MAG 3 shares the least

Conclusion

Might have a role in the actual

- Hydrocarbon Degradation
- Inorganic metal metabolism

Things to further explore

- Looking for things the MAGs don't have compared to the other Roseovarius
- lodide oxidation

Acknowledgements

Shwetha Acharya

Susannah Tringe

Clif

Elle

JGI UCM team

Natasha Brown

Ashleigh Papp

Any Questions?

References

Background

- 1. Scanlon BR, Reedy RC, Xu P, et al. Can we beneficially reuse produced water from oil and gas extraction in the U.S.? Science of The Total Environment. 2020;717:137085. doi:10.1016/j.scitotenv.2020.137085
- Procko E, O'Mara ML, Bennett WF, Tieleman DP, Gaudet R. The mechanism of ABC TRANSPORTERS: General lessons from structural and functional studies of an Antigenic PEPTIDE TRANSPORTER. The FASEB Journal. 2009;23(5):1287-1302. doi:10.1096/fj.08-121855
- 3. The Editors of Encyclopedia Britannica. Molybdate and tungstate minerals. Encyclopædia Britannica. https://www.britannica.com/science/molybdate-mineral. Accessed July 29, 2021.
- 4. Brondijk TH, Fiegen D, Richardson DJ, Cole JA. Roles of NAPF, Napg and NapH, subunits of the Escherichia Coli periplasmic nitrate reductase, IN UBIQUINOL OXIDATION. Molecular Microbiology. 2002;44(1):245-255. doi:10.1046/j.1365-2958.2002.02875.x
- 5. Sukul P, Lupilov N, Leichert LI. Characterization of ml-005, a novel metaproteomics-derived esterase. Frontiers in Microbiology. 2018;9. doi:10.3389/fmicb.2018.01925
- 6. DiTursi MK, Kwon S-J, Reeder PJ, Dordick JS. Bioinformatics-driven, rational engineering of protein thermostability. Protein Engineering Design and Selection. 2006;19(11):517-524. doi:10.1093/protein/gzl039
- 7. Delmar JA, Yu EW. The AbgT Family: A novel class Of antimetabolite transporters. Protein Science. 2015;25(2):322-337. doi:10.1002/pro.2820
- 8. Biopolymer transport protein ExbD/ToIR. Interpro. https://www.ebi.ac.uk/interpro/entry/InterPro/IPR003400/. Accessed July 29, 2021.
- 9. Colclough AL, Scadden J, Blair JM. TetR-family transcription factors in Gram-negative BACTERIA: CONSERVATION, variation and implications For efflux-mediated antimicrobial resistance. BMC Genomics. 2019;20(1). doi:10.1186/s12864-019-6075-5

References

Programs/Tools [In addition to those used in the Midterm Presentation]

- Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States
 Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. 2018;36: 566. doi:
 10.1038/nbt.4163 https://www.nature.com/articles/nbt.4163
- KEGG PATHWAY Database. KEGG: Kyoto Encyclopedia of genes and genomes. https://www.genome.jp/kegg/. Accessed July 29, 2021.
- COG NCBI. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/research/cog. Published 2014. Accessed July 29, 2021.